Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Heart ; 109(11): 823-831, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2313879

ABSTRACT

AIMS: We conducted a meta-analysis of randomised controlled trials (RCTs) of implantable haemodynamic monitoring (IHM)-guided care. METHODS: PubMed and Ovid MEDLINE were searched for RCTs of IHM in patients with heart failure (HF). Outcomes were examined in total (first and recurrent) event analyses. RESULTS: Five trials comparing IHM-guided care with standard care alone were identified and included 2710 patients across ejection fraction (EF) ranges. Data were available for 628 patients (23.2%) with heart failure with preserved ejection fraction (HFpEF) (EF ≥50%) and 2023 patients (74.6%) with heart failure with a reduced ejection fraction (HFrEF) (EF <50%). Chronicle, CardioMEMS and HeartPOD IHMs were used. In all patients, regardless of EF, IHM-guided care reduced total HF hospitalisations (HR 0.74, 95% CI 0.66 to 0.82) and total worsening HF events (HR 0.74, 95% CI 0.66 to 0.84). In patients with HFrEF, IHM-guided care reduced total worsening HF events (HR 0.75, 95% CI 0.66 to 0.86). The effect of IHM-guided care on total worsening HF events in patients with HFpEF was uncertain (fixed-effect model: HR 0.72, 95% CI 0.59 to 0.88; random-effects model: HR 0.60, 95% CI 0.32 to 1.14). IHM-guided care did not reduce mortality (HR 0.92, 95% CI 0.71 to 1.20). IHM-guided care reduced all-cause mortality and total worsening HF events (HR 0.80, 95% CI 0.72 to 0.88). CONCLUSIONS: In patients with HF across all EFs, IHM-guided care reduced total HF hospitalisations and worsening HF events. This benefit was consistent in patients with HFrEF but not consistent in HFpEF. Further trials with pre-specified analyses of patients with an EF of ≥50% are required. PROSPERO REGISTRATION NUMBER: CRD42021253905.


Subject(s)
Heart Failure , Hemodynamic Monitoring , Ventricular Dysfunction, Left , Humans , Heart Failure/diagnosis , Heart Failure/therapy , Prostheses and Implants , Hospitalization , Stroke Volume , Prognosis
2.
Sensors (Basel) ; 23(3)2023 Jan 26.
Article in English | MEDLINE | ID: covidwho-2255331

ABSTRACT

Chronic heart failure (HF) is associated with high hospital admission rates and has an enormous burden on hospital resources worldwide. Ideally, detection of worsening HF in an early phase would allow physicians to intervene timely and proactively in order to prevent HF-related hospitalizations, a concept better known as remote hemodynamic monitoring. After years of research, remote monitoring of pulmonary artery pressures (PAP) has emerged as the most successful technique for ambulatory hemodynamic monitoring in HF patients to date. Currently, the CardioMEMS and Cordella HF systems have been tested for pulmonary artery pressure monitoring and the body of evidence has been growing rapidly over the past years. However, several ongoing studies are aiming to fill the gap in evidence that is still very clinically relevant, especially for the European setting. In this comprehensive review, we provide an overview of all available evidence for PAP monitoring as well as a detailed discussion of currently ongoing studies and future perspectives for this promising technique that is likely to impact HF care worldwide.


Subject(s)
Heart Failure , Hemodynamic Monitoring , Humans , Pulmonary Artery , Blood Pressure Monitoring, Ambulatory , Monitoring, Ambulatory , Heart Failure/diagnosis , Chronic Disease
3.
Trials ; 23(1): 798, 2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2053951

ABSTRACT

BACKGROUND: Fluid overload is associated with worse outcome in critically ill patients requiring continuous renal replacement therapy (CRRT). Net ultrafiltration (UFNET) allows precise control of the fluid removal but is frequently ceased due to hemodynamic instability episodes. However, approximately 50% of the hemodynamic instability episodes in ICU patients treated with CRRT are not associated with preload dependence (i.e., are not related to a decrease in cardiac preload), suggesting that volume removal is not responsible for these episodes of hemodynamic impairment. The use of advanced hemodynamic monitoring, comprising continuous cardiac output monitoring to repeatedly assess preload dependency, could allow securing UFNET to allow fluid balance control and prevent fluid overload. METHODS: The GO NEUTRAL trial is a multicenter, open-labeled, randomized, controlled, superiority trial with parallel groups and balanced randomization with a 1:1 ratio. The trial will enroll adult patients with acute circulatory failure treated with vasopressors and severe acute kidney injury requiring CRRT who already have been equipped with a continuous cardiac output monitoring device. After informed consent, patients will be randomized into two groups. The control group will receive protocolized fluid removal with an UFNET rate set to 0-25 ml h-1 between inclusion and H72 of inclusion. The intervention group will be treated with an UFNET rate set on the CRRT of at least 100 ml h-1 between inclusion and H72 of inclusion if hemodynamically tolerated based on a protocolized hemodynamic protocol aiming to adjust UFNET based on cardiac output, arterial lactate concentration, and preload dependence assessment by postural maneuvers, performed regularly during nursing rounds, and in case of a hemodynamic instability episode. The primary outcome of the study will be the cumulative fluid balance between inclusion and H72 of inclusion. Randomization will be generated using random block sizes and stratified based on fluid overload status at inclusion. The main outcome will be analyzed in the modified intention-to-treat population, defined as all alive patients at H72 of inclusion, based on their initial allocation group. DISCUSSION: We present in the present protocol all study procedures in regard to the achievement of the GO NEUTRAL trial, to prevent biased analysis of trial outcomes and improve the transparency of the trial result report. Enrollment of patients in the GO NEUTRAL trial has started on June 31, 2021, and is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov NCT04801784. Registered on March 12, 2021, before the start of inclusion.


Subject(s)
COVID-19 , Continuous Renal Replacement Therapy , Hemodynamic Monitoring , Water-Electrolyte Imbalance , Adult , Critical Illness , Humans , Lactates , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Standard of Care , Water-Electrolyte Balance
4.
Respir Physiol Neurobiol ; 298: 103844, 2022 04.
Article in English | MEDLINE | ID: covidwho-1620996

ABSTRACT

BACKGROUND: Use of high positive end-expiratory pressure (PEEP) and prone positioning is common in patients with COVID-19-induced acute respiratory failure. Few data clarify the hemodynamic effects of these interventions in this specific condition. We performed a physiologic study to assess the hemodynamic effects of PEEP and prone position during COVID-19 respiratory failure. METHODS: Nine adult patients mechanically ventilated due to COVID-19 infection and fulfilling moderate-to-severe ARDS criteria were studied. Respiratory mechanics, gas exchange, cardiac output, oxygen consumption, systemic and pulmonary pressures were recorded through pulmonary arterial catheterization at PEEP of 15 and 5 cmH2O, and after prone positioning. Recruitability was assessed through the recruitment-to-inflation ratio. RESULTS: High PEEP improved PaO2/FiO2 ratio in all patients (p = 0.004), and significantly decreased pulmonary shunt fraction (p = 0.012), regardless of lung recruitability. PEEP-induced increases in PaO2/FiO2 changes were strictly correlated with shunt fraction reduction (rho=-0.82, p = 0.01). From low to high PEEP, cardiac output decreased by 18 % (p = 0.05) and central venous pressure increased by 17 % (p = 0.015). As compared to supine position with low PEEP, prone positioning significantly decreased pulmonary shunt fraction (p = 0.03), increased PaO2/FiO2 (p = 0.03) and mixed venous oxygen saturation (p = 0.016), without affecting cardiac output. PaO2/FiO2 was improved by prone position also when compared to high PEEP (p = 0.03). CONCLUSIONS: In patients with moderate-to-severe ARDS due to COVID-19, PEEP and prone position improve arterial oxygenation. Changes in cardiac output contribute to the effects of PEEP but not of prone position, which appears the most effective intervention to improve oxygenation with no hemodynamic side effects.


Subject(s)
Blood Pressure/physiology , COVID-19/physiopathology , COVID-19/therapy , Heart Rate/physiology , Outcome and Process Assessment, Health Care , Oxygen Consumption/physiology , Positive-Pressure Respiration , Prone Position , Vascular Resistance/physiology , Aged , Aged, 80 and over , Female , Hemodynamic Monitoring , Humans , Intensive Care Units , Italy , Male , Middle Aged , Prone Position/physiology
5.
Prog Cardiovasc Dis ; 69: 47-53, 2021.
Article in English | MEDLINE | ID: covidwho-1536982

ABSTRACT

Heart failure (HF) is associated with considerable morbidity and mortality. The increasing prevalence of HF and inpatient HF hospitalization has a considerable burden on healthcare cost and utilization. The recognition that hemodynamic changes in pulmonary artery pressure (PAP) and left atrial pressure precede the signs and symptoms of HF has led to interest in hemodynamic guided HF therapy as an approach to allow earlier intervention during a heart failure decompensation. Remote patient monitoring (RPM) utilizing telecommunication, cardiac implantable electronic device parameters and implantable hemodynamic monitors (IHM) have largely failed to demonstrate favorable outcomes in multicenter trials. However, one positive randomized clinical trial testing the CardioMEMS device (followed by Food and Drug Administration approval) has generated renewed interest in PAP monitoring in the HF population to decrease hospitalization and improve quality of life. The COVID-19 pandemic has also stirred a resurgence in the utilization of telehealth to which RPM using IHM may be complementary. The cost effectiveness of these monitors continues to be a matter of debate. Future iterations of devices aim to be smaller, less burdensome for the patient, less dependent on patient compliance, and less cumbersome for health care providers with the integration of artificial intelligence coupled with sophisticated data management and interpretation tools. Currently, use of IHM may be considered in advanced heart failure patients with the support of structured programs.


Subject(s)
Arterial Pressure , Atrial Function, Left , Atrial Pressure , Heart Failure/diagnosis , Hemodynamic Monitoring/instrumentation , Pulmonary Artery/physiopathology , Remote Sensing Technology/instrumentation , Telemedicine/instrumentation , Algorithms , COVID-19 , Diffusion of Innovation , Equipment Design , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Predictive Value of Tests , Prognosis , Reproducibility of Results , Signal Processing, Computer-Assisted
6.
Sensors (Basel) ; 21(7)2021 Mar 27.
Article in English | MEDLINE | ID: covidwho-1308416

ABSTRACT

The CardioMEMS pulmonary artery (PA) monitoring system placed in the left lower lobe pulmonary artery is capable of measuring pulmonary artery pressure remotely as a surrogate of intracardiac filling pressures and volume status. The technique is safe and reliable. By using remote PA monitoring for proactive medical interventions, there is a growing body of clinical evidence for a substantial, robust reduction in HF hospitalizations in various populations (clinical trial setting, post-marketing studies and real-world experiences). This review summarizes the clinical evidence, outlines future perspectives, and aims for remote patient care in heart failure using CardioMEMS.


Subject(s)
Heart Failure , Hemodynamic Monitoring , Chronic Disease , Heart Failure/diagnosis , Heart Failure/therapy , Humans , Pulmonary Artery
7.
J Intensive Care Med ; 36(5): 511-523, 2021 May.
Article in English | MEDLINE | ID: covidwho-1029763

ABSTRACT

Point-of-Care (POC) transthoracic echocardiography (TTE) is transforming the management of patients with cirrhosis presenting with septic shock, acute kidney injury, hepatorenal syndrome and acute-on-chronic liver failure (ACLF) by correctly assessing the hemodynamic and volume status at the bedside using combined echocardiography and POC ultrasound (POCUS). When POC TTE is performed by the hepatologist or intensivist in the intensive care unit (ICU), and interpreted remotely by a cardiologist, it can rule out cardiovascular conditions that may be contributing to undifferentiated shock, such as diastolic dysfunction, myocardial infarction, myocarditis, regional wall motion abnormalities and pulmonary embolism. The COVID-19 pandemic has led to a delay in seeking medical treatment, reduced invasive interventions and deferment in referrals leading to "collateral damage" in critically ill patients with liver disease. Thus, the use of telemedicine in the ICU (Tele-ICU) has integrated cardiology, intensive care, and hepatology practices across the spectrum of ICU, operating room, and transplant healthcare. Telecardiology tools have improved bedside diagnosis when introduced as part of COVID-19 care by remote supervision and interpretation of POCUS and echocardiographic data. In this review, we present the contemporary approach of using POC echocardiography and offer a practical guide for primary care hepatologists and gastroenterologists for cardiac assessment in critically ill patients with cirrhosis and ACLF. Evidenced based use of Tele-ICU can prevent delay in cardiac diagnosis, optimize safe use of expert resources and ensure timely care in the setting of critically ill cirrhosis, ACLF and liver transplantation in the COVID-19 era.


Subject(s)
Acute-On-Chronic Liver Failure , COVID-19 , Critical Care , Echocardiography/methods , Liver Cirrhosis , Point-of-Care Systems , Remote Consultation , Shock , Acute-On-Chronic Liver Failure/etiology , Acute-On-Chronic Liver Failure/physiopathology , Acute-On-Chronic Liver Failure/therapy , COVID-19/epidemiology , COVID-19/prevention & control , Cardiology/trends , Critical Care/methods , Critical Care/organization & administration , Critical Illness/therapy , Delayed Diagnosis/prevention & control , Hemodynamic Monitoring/instrumentation , Hemodynamic Monitoring/methods , Humans , Infection Control , Liver Cirrhosis/complications , Liver Cirrhosis/physiopathology , Liver Cirrhosis/therapy , Organizational Innovation , Remote Consultation/instrumentation , Remote Consultation/methods , Remote Consultation/organization & administration , SARS-CoV-2 , Shock/diagnosis , Shock/etiology , Shock/therapy
8.
Curr Heart Fail Rep ; 18(1): 12-22, 2021 02.
Article in English | MEDLINE | ID: covidwho-1014219

ABSTRACT

PURPOSE OF REVIEW: Wireless hemodynamic monitoring in heart failure patients allows for volume assessment without the need for physical exam. Data obtained from these devices is used to assist patient management and avoid heart failure hospitalizations. In this review, we outline the various devices, mechanisms they utilize, and effects on heart failure patients. RECENT FINDINGS: New applications of these devices to specific populations may expand the pool of patients that may benefit. In the COVID-19 pandemic with a growing emphasis on virtual visits, remote monitoring can add vital ancillary data. Wireless hemodynamic monitoring with a pulmonary artery pressure sensor is a highly effective and safe method to assess for worsening intracardiac pressures that may predict heart failure events, giving lead time that is valuable to keep patients optimized. Implantation of this device has been found to improve outcomes in heart failure patients regardless of preserved or reduced ejection fraction.


Subject(s)
COVID-19/epidemiology , Heart Failure/diagnosis , Heart Failure/therapy , Hemodynamic Monitoring/instrumentation , Pulmonary Artery , Hemodynamic Monitoring/methods , Humans , Quality of Life , Randomized Controlled Trials as Topic , User-Computer Interface
9.
Anaesthesiol Intensive Ther ; 52(5): 409-417, 2020.
Article in English | MEDLINE | ID: covidwho-983605

ABSTRACT

The SARS-CoV-2-related disease has an undoubted impact on the healthcare system. In the treatment of severe COVID-19 cases, the main focus is on respiratory failure. However, available data suggest an important contribution of haemodynamic impairment in the course of this disease. SARS-CoV-2 may affect the circulatory system in various ways that are universal for septic conditions. Nonetheless, unique features of this pathogen, e.g. direct insult leading to myocarditis and renin-angiotensin-aldosterone axis dysregulation, must be taken into account. Although current recommendations on COVID-19 resemble previous septic shock guidelines, special attention to haemodynamic monitoring and treatment is necessary. Regarding treatment, one must take into account the potential profound hypovolaemia of severe COVID-19 patients. Pharmacological cardiovascular support should follow existing guidelines and practice. Interesting concepts of decatecholaminisation and the effect of vasopressors on pulmonary circulation are also presented in this review on COVID-19-related haemodynamic failure.


Subject(s)
COVID-19/physiopathology , COVID-19/therapy , Hemodynamics , COVID-19/complications , Cardiovascular Diseases/etiology , Cardiovascular Diseases/therapy , Critical Care , Hemodynamic Monitoring , Humans
11.
Anaesth Crit Care Pain Med ; 39(5): 563-569, 2020 10.
Article in English | MEDLINE | ID: covidwho-696277

ABSTRACT

PURPOSE: To survey haemodynamic monitoring and management practices in intensive care patients with the coronavirus disease 2019 (COVID-19). METHODS: A questionnaire was shared on social networks or via email by the authors and by Anaesthesia and/or Critical Care societies from France, Switzerland, Belgium, Brazil, and Portugal. Intensivists and anaesthetists involved in COVID-19 ICU care were invited to answer 14 questions about haemodynamic monitoring and management. RESULTS: Globally, 1000 questionnaires were available for analysis. Responses came mainly from Europe (n = 460) and America (n = 434). According to a majority of respondents, COVID-19 ICU patients frequently or very frequently received continuous vasopressor support (56%) and had an echocardiography performed (54%). Echocardiography revealed a normal cardiac function, a hyperdynamic state (43%), hypovolaemia (22%), a left ventricular dysfunction (21%) and a right ventricular dilation (20%). Fluid responsiveness was frequently assessed (84%), mainly using echo (62%), and cardiac output was measured in 69%, mostly with echo as well (53%). Venous oxygen saturation was frequently measured (79%), mostly from a CVC blood sample (94%). Tissue perfusion was assessed biologically (93%) and clinically (63%). Pulmonary oedema was detected and quantified mainly using echo (67%) and chest X-ray (61%). CONCLUSION: Our survey confirms that vasopressor support is not uncommon in COVID-19 ICU patients and suggests that different haemodynamic phenotypes may be observed. Ultrasounds were used by many respondents, to assess cardiac function but also to predict fluid responsiveness and quantify pulmonary oedema. Although we observed regional differences, current international guidelines were followed by most respondents.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Critical Care/methods , Health Care Surveys , Hemodynamic Monitoring , Pandemics , Pneumonia, Viral/therapy , Africa/epidemiology , Americas/epidemiology , Asia/epidemiology , Australia/epidemiology , COVID-19 , Cardiotonic Agents/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Disease Management , Echocardiography/statistics & numerical data , Europe/epidemiology , Fluid Therapy , Hemodynamics/drug effects , Humans , Oxygen/blood , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Procedures and Techniques Utilization , Pulmonary Edema/etiology , Pulmonary Edema/physiopathology , SARS-CoV-2 , Shock/etiology , Shock/physiopathology , Vasoconstrictor Agents/therapeutic use
12.
Heart Fail Rev ; 26(1): 1-10, 2021 01.
Article in English | MEDLINE | ID: covidwho-680074

ABSTRACT

Heart failure is a common disease state that can be encountered at different stages in the course of a COVID-19 patient presentation. New or existing heart failure in the setting of COVID-19 can present a set of unique challenges that can complicate presentation, management, and prognosis. A careful understanding of the hemodynamic and diagnostic implications is essential for appropriate triage and management of these patients. Abnormal cardiac biomarkers are common in COVID-19 and can stem from a variety of mechanisms that involve the viral entry itself through the ACE2 receptors, direct cardiac injury, increased thrombotic activity, stress cardiomyopathy, and among others. The cytokine storm observed in this pandemic can be a culprit in many of the observed mechanisms and presentations. A correct understanding of the two-way interaction between heart failure medications and the infection as well as the proposed COVID-19 medications and heart failure can result in optimal management. Guideline-directed medical therapy for heart failure should not be interrupted for theoretical concerns but rather based on tolerance and clinical presentation. Initiating specific cardiac or heart failure medications to prevent the infection or mitigate the disease is also not an evidence-based practice at this time. Heart failure patients on advanced therapies including those with heart transplantation will particularly benefit from involving the advanced heart failure team members in the overall management if they contract the virus.


Subject(s)
COVID-19 Drug Treatment , COVID-19/epidemiology , Heart Failure/epidemiology , Heart Failure/therapy , COVID-19/physiopathology , Comorbidity , Disease Progression , Heart Failure/physiopathology , Heart Transplantation , Heart-Assist Devices , Hemodynamic Monitoring , Hemodynamics , Humans , Immunosuppression Therapy , SARS-CoV-2 , Self Care , Telemedicine
13.
Rev Assoc Med Bras (1992) ; 66(4): 521-527, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-613692

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2 infection) is a new challenge for all countries, and children are predisposed to acquire this disease. Some studies have demonstrated more severe diseases in adults, but critically ill pediatric patients have been described in all ages. Pulmonary involvement is the major feature, and ventilatory support is common in critical cases. Nevertheless, other very important therapeutic approaches must be considered. In this article, we reviewed extensively all recent medical literature to point out the main clinical attitudes to support these pediatric patients during their period in respiratory support. Radiologic findings, fluid therapy, hemodynamic support, use of inotropic/vasopressors, nutritional therapy, antiviral therapy, corticosteroids, antithrombotic therapy, and immunoglobulins are analyzed to guide all professionals during hospitalization. We emphasize the importance of a multi-professional approach for adequate recovery.


Subject(s)
Coronavirus Infections/therapy , General Practice/methods , Pneumonia, Viral/therapy , Respiration, Artificial/methods , Adolescent , Betacoronavirus , COVID-19 , Child , Critical Illness , Fluid Therapy/methods , Hemodynamic Monitoring/methods , Humans , Nutrition Therapy/methods , Pandemics , Physical Therapy Modalities , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL